Friday, December 15, 2017

3D Printed Catamaran Boat - Part Two

Following the success of the previous print, of the model of the Catamaran Boat Model the student (ten years old) who crreated the 3D Printed model boat decided to 'road test it' by floating it in the school swimming pool, to test its ability to float.  As mentioned in the previous print detials the sail was for comestic purposes only, as it was made using paper.

The boat was tested in the water for one hour, and did not sink, or show evidence of sinking at
all.  Water covered the top of the design, however it 'washed' off allowed the boat to remain bouyant.  We further tested the boat by throwing or dropping it into the water from 1m to 2m height and then skimming it as far as we could 'flip it'.   During this level of testing the boat would not sink or tip, it simply comtinued to float.  If the boat was delibrately flipped and turned upside down it would remain in this state. 
The damage shown to the mast left occurred when a student flicked the design, and it hit directly the edge of the pool.  This caused the mast to break off (as shown).  However while the mast itself would sink when held below the water,  the base of the boat would not even when it was held underwater on the base of the pool.

Given all the testing that was carried out in the last two days the design is practical in terms of its water durability and water tightness, a regular print will not sink as the PLA continually refloats.  This design as shown while it is basic represents the first basic print and design in the series.  The inention is for the students to design, manufacture and mount a motor onto the boat to allowed it to be semi-powered which will provide the next challenge for students.

Wednesday, December 13, 2017

3D Printed Model Catamaran Boat - Part One

Above: Original design from Tinkercad.
Challenge: For student to produce a working model of a boat (in this case a catamaran).
Background: Tinkercad as a version of software are continually evolving and looking at producing new ideas, which are released as part of the design software.  A student from my class who is ten years old was able to locate the new design features and located the 'boat hull' design template.  The student concerned has a talent for design and engineering and is forever tinkering and creating projects, which is a great strength of his.  In this example he was fascinated with the prospect of creating a boat.   It was reasoned that by 3D Printing the hull that the boat would be able to float, or should be designed to do so, including problem solving to ensure that it was a workable model.    This is the students first draft attempt at completing a boat.  He has already looked on Youtube to develop possibilities for a working motor that would work in conjunction with the boat.  The first task was to complete the hull, test it to ensure that it would float, and look at altering the dimensions, print settings etc to ensure that this was possible.
Completed print with cosmetic sail
Level of Difficulty: Medium, the hull design needed to be workable (see below) which would allow more advanced features to be added.  While the hull template came from Tinkercad the decision was made to create a catamaran for the balance that it would provide for the base.   At this stage we were still investigating the best way for the boat to work.   The sail shown on the right hand side was for decorative purposes as the decision has been made to look at including a motor to power the boat.
Timeframe: The total print time for the base of the catamaran was ten hours.  There was minimum rafting with the print, the masts were having a cosmetic effect, so they could have been resized.   The base of the catamaran was designed to provide stability to the print, first and foremost.   The nozzle was 8mm and the print setting was 'regular'.
Size: The length of each hull is 18cm.   The width is 2cm and the height was 2cm.   The middle of the catamaran was essentially a 12cm by 8cm rectangle, with a depth/width of 5mm.  The smaller mast was 9cm high and the second smaller mast was 6cm.   Given the purpose of the print is to have a motor fitted at the back to power the boat, the dimensions are about the minimum that is required.
What we would do differently: This chance find has opened up a whole level of development of 3D
Above: Water testing the prototype
Printing for our students (which has ironically come in the last regular week of school).   The boat design required specific requirements with the intention of a motor being used to power the boat.   Given the success of the initial print (we were not even sure if the PLA used for the 3D Printer would actually float, or we would need to hollow out the inside of the hull).  Going forward there will need to be a location for the motor to be housed on the design.   
Next challenge for the students: The sails of the prototype are purely cosmetic, the students could consider using a fabric that might have a practical use.   The dimensions of the catamaran seem correct at the moment, however this will be dependant on the size of the motor, and how this will relate to the design.   We are currently sourcing a motor at the moment which will require the design to be revisited.    We will be water testing the design over time.

Tuesday, December 5, 2017

3D Printed Jewellery Stand

Above: Jewllery Stand shown as first prototype 
Challenge: To produce a personalised stand for the hanging of an important item of jewellery.
Background: Student was looking at creating an individual project.   She had a family member that has a specific piece of jewellery, and this item requires a specific location for it to be held.  The student wanted to create an individual and personalised stand for the item.   They had seen similar projects created in class and felt the 3D Printing aspect of it would meet the brief and produce a unique product that would also double as a christmas present.
Level of Difficulty: Low/medium - the basic design was created from the main interface.  The idea was to have an extension to the design where the jewellery could hang from. 
Above: Print shown on its side
Timeframe: Five hours from completion from regular print settings with a 8mm nozzle, the revised version will take longer (see below).
Size: 12cm in height.  The base in the present version is 4cm across and 3cm wide.  This design is in the process of being re-worked thanks to feedback from the first draft print. 
What we we would do differently:
The lettering design worked, as did the shape design.   The areas that need to be addressed are the base plate - which there isn't one.  As a shape the design is relatively stable however it is easily tipped over.  As a result the student is designing a revised version of this print that included a base plate to allow more stability.   The aspect of the print designed to hang the jewellery needed to be longer to ensure that the jewellery could be held more easily.   The student also decided that they needed to increase the overall size of the print as well.  This is currently being redesigned.
Next Steps for Students: Redesign base, arm to hold jewellery - test the prototype with hanging an object of similar size to the jewellery it has been designed to hold.   

Sunday, December 3, 2017

3D Printed Student Business Container

Completed print with the lid in place
Challenge: Students to produce a working sample model container for a business that they are running.  Sample container needs to hold a variety of liquids and other items that the business could potentially produce - the students were still developing a business model and idea when they decided to work on the containers.
Background: The students had shown an interest in running a small scale business (they are ten years old) they had limited experience with 3D Printing, and took some inspiration from the class next door who had produced mock up models of these for a project evening where the parents and the local community came to view the students term work on display.  Their intent was to produce a container that could hold a sample of product that they were looking at producing such as lip balm or other cosmetics.  The successful construction of a container that would be water tight and potentially sealed would allow a variety of products to be produced.
Base and lid clearly shown
Level of Difficulty: Low - the print consists of two parts, with a hollow out centre.  The shape is obviously heart inspired and was created using the Tinkercad main interface.  There was potentially additional features that could have been added (see below).  Both students had experience in 3D Printed in the classroom this year and we looking to extend themselves by creating this project from scratch without the input of others. 
Timeframe: Three and a half hour total print.  The lid as shown has a significant hole in it, which allows the product inside to be easily viewed.  The base was hollowed out to allow the container to hold liquid and 'product'.   Additional features could potentially be added (see below). 
Size: The box is 8cm across, has a length of 6cm and is 4cm high.    The width of the sides of the box was 5mm.  The depth of the lid likewise was 5mm.
What we would do differently: Nothing (again see below) the print worked exactly as was intended.   The students were wanting the package to guide their products and influence what they were able to manufacture.
Next Challenge for the students: The business that they are developing could have its name, or the initials of the business inserted into either the lid or the base.  The students contemplated doing this however there have been some issues with lettering etc on smaller prints (and again we were using a 8mm nozzle not a 4mm which could have potentailly improved the detail but would have significantly increased the print time).

Wednesday, November 29, 2017

3D Printed Basic Sign

Challenge: To produce a sign for display as part of a group display.
Background: Students had a display as part of a cluster of schools and students display for a local evening.   Students were looking for ways to display thier work with something creative and original- that would also be eye catching.
Level of Difficulty:  Low.  Students were able to produce this sort of thing extremely easily - it was created with the basic interface available from Tinkercad, with simply the lettering overlaid over top.  This typical design would expect to be created in a two minute timeframe - which all students in the classroom (Y5/6 - ten year olds) are capable of this.
Timeframe: Six hours - this print could have been radically altered depending on the depth of the lettering and the font.  The students raised the lettering 5mm from the base of the plate, this easily could have been reduced to reduce the print time, to still maintain the affect. 
Size: The base plate was 15cm across and had a height of 6cm.   The depth of the plate was 5mm and the lettering was raised a further 5mm from the base of the plate. 
What we would do differently: The choice of the font with the lettering was basic, and the letting itself was not as clearly defined on the base of the 'y'.  The students also hadn't used the capital 'm' for the lettering, which they should have done.   Potentially the students could have designed holes for screws depending on what it was to be attatched to. 
Next Stepts for students: To use a font that better suited for the display of the sign.  They could have included photograph/images related to the topic as part of the sign.

Sunday, November 26, 2017

3D Printed Watch Stand

Design as shown from above
Challenge: To produce a working watch stand suitble for the storage of a worn watch.
Background: This design idea actually came from a parent of the student concerned who challenged the student to create a watch stand so that he would have a better organised room and his personal posssesions would be in a better place.  The student has been responsible for a number of designs on this page and was working a an advanced level (for a Y5 student in New Zealand, which makes the student ten years old).  The student came up with the idea, the design - including using Tinkercad to provide the key elements and shapes as clearly shown.   The student came with the entire project in mind and the teachers only input was to provide the hardware to complete the
Side of design
Level of Difficulty: Low - the design shown above has the three key elements.   The student designed the base, sides and main bar in under three mintues.   The dimensions took slightly longer however the student wanted to print the design first, to see how it looked before adding any additional features (see below).  This sort of design should be easily completed by students of any age.
Timeframe: The design took ten hours on a regular infil setting and as with every recent (2017) design on this blog was completed with a 8mm nozzle.  As an aside I personally visited a school last week who had an Ultimaker 3 and had completed a first set of prints, I would hesitate to suggest based on the speeds etc that they were using a 4mm nozzle and high infill settings - this was going to prove to be extremely problematic moving forward for a class/school situation.
Size: The base plate for the design was 14cm across and 7cm wide.   It was a height of 9cm.  It was discussed during this print that a similar designed Headphone stand would be worth investigating for a future work project/design.  The width of the plate was 5mm.
What we would do differently: This student was intent on running a print prior to discussing the adding of personal touches to the print - the obvious basic one was a name on the plate or the side of the design, which would have had minimal design required.   The most pleasing aspect of the design was that ever aspect of the design came from a ten year old who had identified the problem, a soultion, came up with a practical design that worked and the featured print was the first attempt.
Next Steps for the Students: Personalising the design is the obvious one that has already been discussed.  We are investigating the practicality of creating some form of headphone stand or wall mount, although the size may vary.   Also discussed student adding a draw, into the base of the design which has him thinking of ways to complete it successfully.

Thursday, November 23, 2017

3D Printed Christmas Giftbox

As shown from above with dividing internal wall
Challenge:  To produce a personalised box, that has a working lid and been personalised for a student to give as a gift. 
Background: This student has designed a series of increasingly complicated prints, during the course of the year.   He was looking to push and challenge himself, hence some of the features that were added to the design of this box.
Failed lid
Level of Difficulty: Medium-Hard.   The box itself required considerable reworking and redesign.  It had a series of personally designed features to make the box unique but also allow it to be recognisable.   The lettering that was set into the base of the box, the lid and the drop down nature of it, the internal bar to divide the base into two compartments all required considerable design, testing and reworking.  The lid required a complete reworking, as the initial handle failed as it was not thick enough and shattering as the rafting was removed.
Christmas decorations
Timeframe: This was printed in two seperate pieces.  The first was the base, followed by a seperate lid.  The  base print meant that the lid could be resized (and subsequently was) to ensure that it fitted correctly (as it did not following the first print).  The lid took eight hours, so a combined print time for both pieces was obviously eighteen hours.  Given circumstances little would be changed from the original design to reduce the level of printing required. 
Lid in place on the base.
Size: The dimensions of the box were 12cm long, 8cm wide and 6cm long.  The width of the printed sides varied from 5mm to 1cm depending on the aspect of the design.  The lid had similar dimensions including a drop down.   
What we would do differently: The lettering went right through the wall of the print - this type of design can cause problem with the rafting removal around there.  An example is shown above left, if you view the inside of the 'M' the right hand side has been removed, this was by the teacher taking extreme care to avoid doing so.    The fit with the lid was there - however it would have been better to have a more robust lid with a better fit.
Next Steps for the Students: This design has been repeatedly completed by students including increasing complex additions to the basic design from the Tinkercad Interface.  At time some of the students tend to create designs that are overly elaborate - and this was bordering on the case in this.